
Pertanika J. Sci. & Technol. 33 (2): 653 - 676 (2025)

Journal homepage: http://www.pertanika.upm.edu.my/

© Universiti Putra Malaysia Press

SCIENCE & TECHNOLOGY

ISSN: 0128-7680
e-ISSN: 2231-8526

Article history:
Received: 16 April 2024
Accepted: 19 August 2024
Published: 21 February 2025

ARTICLE INFO

DOI: https://doi.org/10.47836/pjst.33.2.06

E-mail addresses:
sarahmohdisnan@gmail.com (Siti Sarah Mohd Isnan) 
ahmadfikri@upm.edu.my (Ahmad Fikri Abdullah)
rashidpls@upm.edu.my (Abdul Rashid Mohamed Shariff)
iskandar_i@upm.edu.my (Iskandar Ishak)
norkhadijah@upm.edu.my (Sharifah Norkhadijah Syed Ismail)
doria.tai@sabah.gov.my (Doria Tai)
mahesh@moh.gov.my (Maheshwara Rao Appanan)
* Corresponding author

Leveraging Computational Model Approach in Understanding 
Infectious Disease: A Case Study in Sabah, Malaysia

Siti Sarah Mohd Isnan1,2, Ahmad Fikri Abdullah3*, Abdul Rashid Mohamed Shariff1, 
Iskandar Ishak4, Sharifah Norkhadijah Syed Ismail5, Doria Tai6 and 
Maheshwara Rao Appanan7

1Faculty of Defence Science and Technology, Universiti Pertahanan Nasional Malaysia, 57000 Kem Sg Besi, 
Malaysia
2Department of Biological and Agricultural Engineering, Faculty of Engineering, University Putra Malaysia, 
43400 UPM, Serdang, Selangor, Malaysia
3International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port 
Dickson 70150, Malaysia
4Department of Computer Science, Faculty of Computer Science and Information Technology, Universiti Putra 
Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
5Department Environmental and Occupational Health, Faculty of Medicine and Health Sciences, University 
Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
6Sabah State Department, Floor 12-14, Block A, Sabah State Administrative Centre, Jalan Sulaiman, Teluk 
Likas, 88400 Kota Kinabalu, Sabah, Malaysia
7Ministry of Health Malaysia, 62000 Putrajaya, Malaysia

ABSTRACT

The COVID-19 pandemic due to the SARS-CoV-2 coronavirus has vastly impacted our national 
health and economic industries. Hence, the utilisation of big data simulation of the outbreak is 
essential to guide policymakers, government, and health authorities in better understanding the 
dynamics of the infectious disease. This paper integrates the Agent-Based-Model (ABM) and 
Susceptible, Exposed, Infectious and Recovered (SEIR) framework to understand the dynamic 
transmission of COVID-19 in Sabah, Malaysia. This study employed NetLogo software, which 

includes parameters such as geographical 
distribution, population density, variant type, 
lockdown measures, and vaccination rates 
across 27 districts, to run the simulation and 
assess the potential impact of public health 
interventions. The methodology involves 
different scenario simulations using varying 
variant types, vaccination coverage, lockdown, 
and social distancing measures to determine the 
virus transmission level. The results indicate that 
higher vaccination coverage and strict adherence 
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to preventive measures can reduce the spread of the virus, especially in highly densely populated 
areas. Our simulation resulted in a 2.54% variance with the true data following the parameters and 
settings mentioned above. Additionally, this study also found that geographical structure and uneven 
distribution of healthcare across the Sabah district notably affect disease and disaster management 
and intervention policy and efficacy. These insights are crucial for Malaysian policymakers and 
health authorities, which need to tailor the public health responses considering geographical and 
demographic settings. Future recommendations include data of higher geographical resolution, 
immunisation records, and real-time mobility data to portray a more realistic simulation. 

Keywords: ABM, big data, COVID-19, epidemiology, infectious disease, SEIR 

INTRODUCTION

COVID-19 is caused by Severe Acute Respiratory Syndrome Coronavirus 2, known as 
SARS-CoV-2, which has affected countries worldwide since March 2020 (López & Rodó, 
2021). The first case was reported in December 2019 in Wuhan, China, and it spread all 
over the world until WHO announced it as a pandemic in March 2020 (Shamil et al., 2021). 
By June 2023, the number of COVID-19 cases worldwide had exceeded 767 million, and 
deaths had reached almost 7 million (World Health Organization, 2023b). Governments 
around the world have implemented various measures to curb the spread of the virus, such 
as social distancing, travel restrictions, and widespread testing (Shah et al., 2020). Despite 
these efforts, the number of confirmed cases has continued to rise, and the pandemic has 
significantly impacted the country’s economy, healthcare system and society (Gill et al., 
2020). International research to aid policymakers in combatting the virus is crucial to avoid 
more loss, especially in economic industries (Cheng et al., 2020). 

In Malaysia, the first COVID-19 case was reported in January 2020, followed by a total 
lockdown in March 2020, which has caused catastrophic effects on economic industries 
and other government and private sectors (Roslan et al., 2022). Sabah, particularly a state 
in Malaysia, has also experienced the devastating effects of the outbreak. A study by Azzeri 
et al. (2020) has proven that Sabah communities were experiencing significant health 
issues even before COVID-19 appeared. M. Goroh et al. (2020) have reported that Sabah 
is experiencing high cases of infectious diseases such as tuberculosis. Additionally, the 
Sabah citizens are experiencing difficulties in healthcare facilities and delivery due to the 
geographical location separating them from the main Peninsular of Malaysia. Tha et al. 
(2020) mentioned that the geographical features in Sabah, especially in rural areas, have 
further hindered the healthcare system accessibility there due to the steep hills and rivers. 

Patients with COVID-19 have experienced difficulties accessing hospitals and clinics 
to get treated and get vaccinations (Yeo, 2020). Scholars such as Azhary et al. (2022) 
have demonstrated that the healthcare services in rural areas of Sabah are 48% lower than 
in Peninsular Malaysia, which is around 68% in terms of longer travel time and distance 
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to access healthcare facilities. Due to this, COVID-19 patients may not be able to be 
treated properly, causing morbidity and mortality rates to be high. As stated by Jafar et 
al. (2024), the vaccination rate of COVID-19 in Sabah is lower compared to Peninsular 
Malaysia; therefore, dynamic predictions in the Sabah area will provide valuable insights 
into determining the epidemiological characteristics, analysing the effects of interventions, 
and offering useful insights into the dynamics of the disease. They assist policymakers 
and public health professionals in making decisions about allocating resources and 
implementing efficient control measures. Among the various models and approaches used 
to predict the dynamics of COVID-19, the SEIR model is one of the famous methods for 
studying COVID-19 transmission (Thompson & Wattam, 2021). The SEIR model divides 
the population into four compartments: susceptible, exposed, infectious, and recovered (Qiu 
et al., 2022). SEIR model uses dynamic equations to detect the dynamics of COVID-19. 
Hence, the adaptive numerical method, introduced by Qureshi et al. (2023) and Hassan et 
al. (2023), is useful for increasing the accuracy of the simulations, especially when dealing 
with unpredictable and variable changes in COVID-19. 

Most researchers incorporated and added new variables in their research. For example, 
Silva et al. (2020) used the SEIR model to simulate the dynamics of COVID-19 using a 
society of agents emulating people, businesses, and government in Brazil. Pandey et al. 
(2019) used the SEIR model and regression analysis to predict the dynamics and patterns 
of COVID-19, while Avinash et al. (2022) used optimisation to increase the effectiveness 
of the SEIR model in India. Kucharski et al. (2020) evaluated the effectiveness of isolation, 
testing, contact tracing, and physical distancing measures with different parameters using 
the SEIR model in the United Kingdom. Almeshal et al. (2020) and Zhao et al. (2022) 
combined logistic regression and the SEIR model to predict the COVID-19 cases in China 
and Kuwait. Paul et al. (2020) compared the effectiveness of the SEIR model in different 
regions of India and Brazil. Yang et al. (2020) modified the SEIR model by integrating 
the population variable into the mathematical model in China, while Mwalili et al. (2020) 
incorporated environment and social distancing in the compartment model in order to 
increase the efficiency of the model. 

Agent-Based Model (ABM) is a model that can be used to better understand the dynamics 
of infectious disease, as it allows researchers to capture the heterogeneity of the disease by 
simulating a population of agents with varying characteristics and behaviours (Farheen et 
al., 2022). ABM also enables researchers to explore different scenarios and interventions to 
see how they might affect the spread of the disease, such as the effects of social distancing 
measures or vaccination campaigns (Dong et al., 2022). Additionally, ABM can account 
for spatial heterogeneity by simulating interactions between agents within geospatial data, 
which is able to help policymakers and public health officials make informed decisions 
about how to respond to infectious diseases (Thompson & Wattam, 2021).



656 Pertanika J. Sci. & Technol. 33 (2): 653 - 676 (2025)

Siti Sarah Mohd Isnan, Ahmad Fikri Abdullah, Abdul Rashid Mohamed Shariff, Iskandar Ishak,
Sharifah Norkhadijah Syed Ismail, Doria Tai and Maheshwara Rao Appanan

Dong et al. (2022) utilised the agent-based model to simulate the COVID-19 cases 
using geographical data in China. However, Kim and Cho (2022) used the ABM model to 
investigate the effectiveness of control measures in order to control COVID-19 in a closed 
environment. Farheen et al. (2022), Hinch et al. (2021), and Shamil et al. (2021) used ABM 
to simulate the dynamics of COVID-19 in the USA, United Kingdom and Bangladesh. 
Hunter and Kelleher (2022) also used ABM to simulate the effect of crowdedness in 
Ireland. Compartmental models are useful for modelling disease transmission mechanisms. 
However, they require the assumption of complete mixing within compartments and ignore 
many other factors such as geography, population heterogeneity, individual contact vectors, 
social dynamics, governmental decisions (e.g., lockdown measures), and other human 
behaviour complexities (Kong et al., 2022). The COVID-19 pandemic has highlighted the 
need for accurate and reliable models to understand the spread of infectious diseases and 
develop effective strategies to control their transmission. While compartmental models such 
as SEIR have been widely used to study the transmission dynamics of COVID-19, they 
have several limitations, including the assumption of complete mixing within compartments 
and the lack of consideration for individual behaviours, population heterogeneity, and other 
factors that can influence the spread of the virus (Kong et al., 2022).

Hence, to overcome these limitations, scholars have tried to simulate infectious 
diseases using ABM, which is able to produce results of complex patterns (Dong et al., 
2022). By integrating SEIR models with ABMs using big data, researchers can develop 
more accurate and realistic models to understand the dynamics of infectious disease 
outbreaks in specific contexts, such as the Malaysian population, with its unique cultural 
practices and available resources (Tang et al., 2017). As a result, this integration can offer 
a more thorough and precise understanding of the transmission of infectious illnesses as 
well as the efficacy of interventional measures. The architecture of the combined SEIR-
ABM model involves simulating the behaviour of individual agents and their interactions 
with each other and their environment. It also incorporates the SEIR model to capture 
the spread of the disease. 

In this context, the paper aims to develop an ABM combined with an SEIR model to 
better understand the patterns and dynamics of COVID-19 transmission in Sabah, Malaysia, 
by using big data and incorporating factors such as vaccination coverage, population 
mobility and the transmission rate which is able to simulate the spread of the virus and 
explore the impact of interventions such as vaccination and the development of herd 
immunity. The researcher chose Sabah as the study area due to its unique geographical 
distribution, which makes it a challenge for the accessibility of the healthcare system; hence, 
this study is important to yield insights both locally with similar geographical challenges 
(Balakrishnan et al., 2023; M. Goroh et al., 2020; M. M. D. Goroh et al., 2020; Onyechege 
et al., 2022; Tan et al., 2021). Figure 1 depicts the summary of the SEIR-ABM simulation.
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METHODS

This study focuses on Sabah, a state in Malaysia with a total area of 73, 904 km2 (M. M. D. 
Goroh et al., 2020). Sabah has 27 districts, which are Tawau, Papar, Lahad Datu, Tuaran, 
Putatan, Sipitang, Beaufort, Kota Belud, Kinabatangan, Kunak, Sandakan, Semporna, 
Ranau, Penampang, Tambunan, Keningau, Labuk Sugut, Kota Marudu, Pitas, Pensiangan, 
Kudat, Tongod, Telupid, Kuala Penyu, Tenom, Kalabakan and Kota Kinabalu as the capital 
city of Sabah, each population for each district is depicted as shown in Figure 2 (Azzeri 
et al., 2020). The average annual temperature of Sabah is around 24°C, which shows the 
humidity and tropical weather of Sabah throughout the year (Iderus et al., 2022). The 
annual rainfall is about 2102 mm yearly (Iderus et al., 2022). The geographical feature of 
Sabah is mostly covered with mountains and tropical rainforests with an altitude range of 
4100m (Iderus et al., 2022). Kota Kinabalu, which is the capital of the Sabah, has gone 
through rapid urbanisation compared to other districts. The data acquisition resources for 
each variable are shown in Table 1.

Our dataset of 365,115 COVID-19-positive cases was extracted from the Sabah 
State Government. The dataset was derived from hospital reports in Sabah and sent to 
the Sabah State Government (Hashim et al., 2021). This data also included the collection 
of MySejahtera records, which is a mobile application developed by the Malaysian 
Government to monitor COVID-19 in Malaysia (https://mysejahtera.moh.gov.my/ms/). 
The data contains the district-level cases, confirmed cases, recovered cases, and death 
cases. Our population demographic data was obtained from the Department of Statistics, 
Malaysia, during the 2020 census. This data acts as a true representation of the population 

Figure 1. Summary of SEIR-ABM simulation

Summary of
simulation

Geographical 
properties

Agent-based-
model

SEIR model

Location: Sabah

Number of districts: 27

Area: 74 km2

Random movement within the map

Interaction rules

Population distribution in each districts

Flow of individuals between 
compartments

Differential equations representing 
rates of change in each compartment

Individual agents:
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Figure 2. Map of Sabah districts and their total number of populations

Table 1
Data acquisition resources

Data Source Period/Year
District of Sabah Shapefile Sabah State Government 2020
Buildings

Open Street Map 

2020
Roads 2020
Mountains and Forest 2020
Rivers 2020
Number of populations by district in 
Sabah

Department of Statistics Sabah Census data for the year 2020

in each district of Sabah. The data collection period covered the period of the outbreak 
from March 2020 until March 2022. 

The attributes dataset, which includes rivers, buildings, mountains, forests, and 
roads, is downloaded from the Open Street Map website (Relation: Malaysia (2108121) | 
OpenStreetMap). After that, the Sabah district, rivers, roads, buildings, and mountains are 
imported into ArcMap 10.8 for checking. All these layers are aligned with each other using 
the Projected Coordinates of WGS 1984. The map of the Sabah in ArcMap is shown in 
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Figure 3. Distribution of buildings, rivers and mountains in Sabah

Figures 3 and 4. We separated the geographical features into two different maps for better 
visualisation, as distinguishing different geographical features on a large map of Sabah is 
challenging due to the large scale of the Sabah area. However, a large number of attributes 
have caused ArcMap 10.8 to perform slower when loading various elements. 

The simulation of the outbreak is performed in the NetLogo Software Version 6.4.0. 
All the geographical layers are imported in NetLogo, as shown in the code of Figure 5. As 
for this model, the agent or turtle is a person in every district of Sabah. The total number 
of people in each district depicted the total population. The researcher set the location 
and movement of each person at random, as this study does not exhibit the location and 
mobility data of each positive COVID-19 case. Hence, the assumptions of the models are:

1. Number of populations remains constant based on the data. 
2. Random movement at rate 2.0 within the map.
3. Recovered people become immune; if they have already been infected and 

recovered, they will not be infected for the second time.
The SEIR model can be represented graphically using a set of differential equations 

(Equations 1 to 4), which describe the flow of individuals between compartments over time 
(https://docs.idmod.org/projects/emod-hiv/en/2.20_a/model-seir.html).

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −  
𝛽𝛽𝛽𝛽𝑑𝑑
𝑁𝑁

     [1]



660 Pertanika J. Sci. & Technol. 33 (2): 653 - 676 (2025)

Siti Sarah Mohd Isnan, Ahmad Fikri Abdullah, Abdul Rashid Mohamed Shariff, Iskandar Ishak,
Sharifah Norkhadijah Syed Ismail, Doria Tai and Maheshwara Rao Appanan

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −  
𝛽𝛽𝛽𝛽𝑑𝑑
𝑁𝑁

−  𝜎𝜎 𝑑𝑑    [2]

𝑑𝑑𝛽𝛽
𝑑𝑑𝑑𝑑

=  𝜎𝜎 𝑑𝑑 −  𝛾𝛾𝛽𝛽     [3]

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝛾𝛾𝛽𝛽      [4]

Where: dS/dt = the change in the number of susceptible individuals over time; dE/dt = the 
change in the number of exposed individuals over time; dI/dt=  the change in the number of 
infectious individuals over time; dR/dt = the change in the number of recovered individuals 
over time; ß = the disease transmission rate from infectious individuals to susceptible 
individuals; σ = the rate at which exposed individuals become infectious; γ = the rate at 
which infectious individuals recover or develop immunity.

Based on Equation 1, it depicted the rate of change of the susceptible over time. The 
total number of susceptible people is inversely proportional to the number of infected 
people; hence, it is indicated by the negative sign (He et al., 2020). The rate of change is 
directly proportional to the rate of transmission (β), the number of infected persons (I) 
and the remaining susceptible persons (S/N) (He et al., 2020). Equation 2 depicts the rate 

Figure 4. Distribution of roads, rivers and mountains in Sabah
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of change of the exposed people over time. The negative sign indicated that the number 
of exposed people is inversely proportional over time as by the time they will recover 
and become infectious (He et al., 2020). The rate of change is directly proportional to the 
same state as the susceptible conditions and the rate at which the exposed persons become 
infectious (σ) (He et al., 2020). Equation 3 shows the rate of change of the infected persons 
over time. The rate at which people move from the exposed condition to the infected 
condition is represented by positive signs. However, the negative sign is represented by 
the rate at which people recover and move to the recovered condition (He et al., 2020). 
Equation 4 depicts the rate of change of recovered people over time, which shows the 
infected people recovered and moved to the recovered compartment represented by the 
positive sign (He et al., 2020). 

The simulation started by creating a population of citizens, each with its characteristics, 
such as days after exposure and days of sickness. After that, the simulation will run a series 
of procedures to mimic the virus’s spread among them. The simulation is divided into 
procedures, each of which simulates a distinct element of the outbreak. The setup process 
starts the simulation by loading a GIS shapefile and creating citizens within the shapefile’s 
area. The population-list variable, which contains a list of population sizes for each district, 
determines the total number of citizens created in each district. 

Each citizen is chosen at random to be infected with the virus. The go procedure is the 
simulation’s primary loop. It begins by determining whether the simulation has ended, with 
all residents recovering or dying. If not, it performs the following procedures:

1. The moving procedure mimics citizen mobility by randomly rotating and moving 
citizens forward, with a check to see if the target patch is a valid path.

2. The transmission process mimics the virus spread among citizens, with carriers 
(citizens with the orange colour) spreading the virus to susceptible citizens within 
a 1-patch radius, as social distancing lower than 1 metre will increase the risk of 
infection (Badr et al., 2020). 

3. The incubation process mimics the virus’s incubation period, with carriers 
becoming infectious after a certain number of days (determined by the incubation 
period variable) and turning red. In the case of this simulation, we chose 6 days 
as the incubation period following a recommendation by the World Health 
Organisation (World Health Organization, 2023a)

4. The sickness process mimics the virus’s period, with infectious citizens recovering 
or dying after a set number of days (determined by the mortality and recovery 
rates). The transmission rate is set at 75 and 100 to compare the effect of these 
two conditions and the mortality rate at 10. 

5. The find-max-daily-cases procedure keeps track of the simulation’s highest number 
of daily cases.
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6. The mobility procedure keeps the movement of the citizens throughout the districts. 
The movement is set to 0.5 and 1.0 to compare the results. 

7. Other processes in the simulation include vaccinating, which simulates vaccination 
by randomly selecting a certain proportion of susceptible citizens and changing 
their colour to blue to symbolise immunity. 

8. A watch-an-infected-person process also highlights a randomly selected infected 
citizen for visualisation reasons.

9. The variant type provides how fast the COVID-19 virus spreads to another person. 
For example, the Omicron and Delta variants have a higher transmission rate. 

10. The transmission rate indicates the speed of the transmission, which is denoted by 
the type of variant. A transmission rate of 80 for Omicron, 70 for Delta, and 40 for 
Alpha denotes a higher susceptibility of the variant (Umair, 2022). 

11. The mountains, buildings, roads and rivers act as geographical features that allow 
the person to move more realistically. Roads facilitate faster transmission; however, 
mountains and rivers can be denoted as obstacles that limit movement and slow 
down the spread of the virus.

Figure 5. Script to load geographical layers in Netlogo 6.4.0
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12. The lockdown rate parameter also restricts mobility to reduce the spread of the 
virus (Dong et al., 2022).

13. Social distancing also indicates virus spread mitigation (López & Rodó, 2021). 

RESULTS 

The model begins with a human population comprised of susceptible (yellow-coloured) 
individuals, as in Figure 6. When a person exposed to the disease (orange colour) enters 
the community, he or she will spread the disease to one of the susceptible people nearby 
(within a radius of less than 1 metre) at the stated transmission rate as in Figure 7. After the 
specified incubation period, the exposed may develop ill (infectious red colour), as shown 
in Figures 8 and 9. The sick will be quarantined so that they do not infect others. The sick 
individuals will be hospitalised for 14 days. They either die (disappear from the model) 
on the 15th day of illness or recover and become immune to the sickness (blue colour), 
as in Figures 10 and 11. Each citizen is allocated a sex, colour, and size, with some being 
chosen at random to be disease carriers (orange colour). Citizens travel across the nation 
randomly, with mobility limited by areas of green pavement. The model also incorporates a 
vaccine mechanism that vaccinates citizens at random with a predetermined probability. The 
simulation is performed on a grid, with each cell representing a district in the region, and 
citizens are assigned to each cell based on the district’s population density. The simulation 
terminates when there are no more citizens with the red colour, i.e., contagious citizens. 
During the simulation, the model maintains track of the number of residents who died as 
a result of the virus, together with the maximum number of daily cases.

The mobility movement is set to random as this study does not exhibit mobility data. 
More simulations will produce more accurate results because of the nature of the random 

Figure 6. Susceptible person in yellow colour on day 
1 during simulation one

Figure 7. Exposed person in orange colour day 10 
during simulation one
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Figure 11. Sabah map showing infected person that 
has recovered day 210 during simulation one

Figure 8. Infected person in red colour day 20 during 
simulation one

Figure 9. Simulation of Sabah map showing increasing 
of infected persons day 23 during simulation one

Figure 10. Recovered/vaccinated person in blue 
colour day 190 during simulation 1

movement (Motzev, 2019). Since the movement of the agent is set to random, the agent 
may sometimes move in a direction that is not optimal or may even move in the opposite 
direction of the target. In other words, running multiple simulations helps reduce the 
effect of randomness in the agent’s movements, leading to more accurate and reliable 
results. By averaging the results from multiple simulations, the researcher can get a more 
representative sample of the agent’s performance and reduce the impact of individual 
instances of suboptimal or random movements. 

Fifteen simulations were run with the parameters in Table 2 to investigate the impact 
of different combinations of parameters on the spread of the disease. The simulations 
were designed to test the effectiveness of various interventions, such as vaccination 
rates, transmission rates, incubation periods, mobility, social distancing, lockdown, and 
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variant types, in controlling the spread of the disease. The simulations were conducted 
to gain a better understanding of the complex interactions between these variables and 
to make more informed decisions about how to control the spread of the disease (Kim & 
Cho, 2022; Gharakhanlou & Hooshangi, 2020; Nagori et al., 2020). Figure 12 shows the 
NetLogo interface to run the simulation, as stated in Table 1. All settings are stated in the 
methodology section. Figure 13 depicts the screenshot of the NetLogo 6.4 scripts to load 
geographical features of rivers, roads, mountains and buildings.

Figure 14 shows the Graph of Simulation One with a transmission rate of 75, mortality 
of 10, incubation period of 6 days and mobility rate of 0.5. Based on the graph, the number 
of infected cases reached around 1.60 million within 25 days, recovered cases reached 
around 2.5 million within 143 days and died cases of 293,640 cases within 199 days. This 
simulation took around 210 days for all the infected cases to be recovered, and no more 
infections were transmitted. 

Simulation Two demonstrated a transmission rate of 75, mortality of 10, incubation 
period of 6 days and mobility rate of 1. Based on the results, infected cases reached 2.05 
million within 23 days, recovered cases reached around 2.71 million within 143 days and 
died cases of 300,480 cases within 130 days. This simulation took around 143 days for all 
the infected cases to be recovered, and no more infections were transmitted.

Simulation Three demonstrated a transmission rate of 100, mortality of 10, incubation 
period of 6 days and mobility rate of 0.5. Based on the results, the infected cases reached 
around 1.76 million within 23 days, recovered cases reached around 2.65 million within 

Figure 12. Table 1 lists the NetLogo interface to run the simulation. The methodology section states all 
settings
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Figure 13. Screenshot of the NetLogo 6.4 scripts to load geographical features of rivers, roads, mountains 
and buildings

Figure 14. Graph of simulation one

211 days and dead cases 292,740 within 212 days. This simulation took around 212 days 
for all the infected cases to be recovered. 

Simulation Four tested a transmission rate of 100, mortality of 10, incubation period 
of 6 days and mobility rate of 1. Based on the results, the graph of infected cases reached 
around 2.07 million within 23 days, recovered cases reached around 2.73 million within 
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207 days and died cases 292,740 within 207 days. This simulation took around 207 days 
for all the infected cases to be recovered. 

Simulation Five demonstrated a transmission rate of 50, mortality of 10, incubation 
period of 6 days, vaccination rate of 100%, initial number of infected cases of 20 and 
mobility rate of 1. Based on the results, the infected cases reached around 14,400 within 
8 days, recovered cases reached around 3.17 million within 19 days and died cases 1,620 
within 19 days. This simulation took around 19 days for all the infected cases to be 
recovered.

Simulation Six tested a transmission rate of 100, a mortality of 10, an incubation 
period of 6 days, a vaccination rate of 100%, an initial number of infected cases of 20 
and a mobility rate of 1. Based on the results, the infected cases reached around 15,300 
within 7 days, recovered cases reached around 3.17 million within 19 days and died cases 
1,620 within 19 days. This simulation took around 19 days for all the infected cases to be 
recovered.

Simulation Seven demonstrated a transmission rate of 50, a mortality of 10, an 
incubation period of 6 days, a vaccination rate of 0%, an initial number of infected cases 
of 20 and a mobility rate of 1. Based on the results, the infected cases reached around 
21,450 within 7 days, recovered cases reached around 2.67 million within 161 days and 
died cases 294,900 within 161 days. This simulation took around 161 days for all the 
infected cases to be recovered.

Simulation Eight demonstrated a transmission rate of 100, a mortality of 10, an 
incubation period of 6 days, a vaccination rate of 0%, an initial number of infected cases 
of 20 and a mobility rate of 1. Based on the results, the infected cases reached around 
28,560 within 8 days, recovered cases reached around 2.76 million within 143 days and 
died cases 303,330 within 143 days. This simulation took around 161 days for all the 
infected cases to be recovered.

Simulation Nine tested a transmission rate of 50, a mortality of 10, an incubation 
period of 6 days, a vaccination rate of 100%, an initial number of infected cases of 20 
and a mobility rate of 1. Based on the results, the infected cases reached around 23,520 
within 8 days, recovered cases reached around 3.17 million within 23 days and died cases 
2880 within 23 days. This simulation took around 23 days for all the infected cases to be 
recovered.

Simulation Ten tested a transmission rate of 100, a mortality rate of 10, an incubation 
period of 6 days, a vaccination rate of 100%, an initial number of infected cases of 20 
and a mobility rate of 1. Based on the results, the infected cases reached around 26,430 
within 8 days, recovered cases reached around 3.17 million within 23 days and died cases 
reached 4,350 within 23 days. This simulation took around 23 days for all the infected 
cases to be recovered.
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Simulation 11 demonstrated a transmission rate of 70, the Delta variant with 200 
initial infected cases, no vaccination with a mobility rate of 0.5, and the implementation 
of lockdown and social distancing. Based on the results, the infected cases reached around 
1,003 within 28 days, recovered cases reached around 973 within 200 days, and death cases 
reached around 30 within 40 days. The simulation took 200 days to complete.

Simulation 12 performed the same parameters as Simulation 11 but without lockdown 
and social distancing. The results of the initial infected cases are higher: 5,73 cases within 
21 days, 5,625 recovered cases within 31 days and 48 death cases within 31 days. This 
simulation took 212 days to complete. 

Simulation 13 demonstrated the same parameters as Simulation 1, with the added 
parameters of Delta variant, social distancing and lockdown, and an initial infected number of 
8 cases. The results show that the number of infected cases is smaller than those in Simulation 
1, which included 127 cases, 112 recovered cases, and six death cases within 197 days. 

Simulation 14 demonstrated 200 initial infected cases with the Omicron variant at a 
45% vaccination rate and an 80% transmission rate. The results showed that the infected 
cases became 5495, recovered 5148, and death cases 20 within 183 days consecutively. 

The final simulation demonstrated a higher vaccination rate of 60% without lockdown 
intervention. The infected cases became 4193, the recovered cases 4441 and 17 deaths 
occurred within 171 days. Hence, Table 3 summarises the simulation results.

Table 3
Simulation results

Simulation Infected cases Day Recovered cases Day Died Cases Day Days to complete
1 160 25 2,622,750 210 293,640 199 210
2 205 24 2,713,320 143 300,480 130 143
3 176 23 2,656,890 211 292,740 212 212
4 207 23 2,730,780 207 300,270 185 207
5 14,400 8 3178980 19 1620 19 19
6 15,030 8 3178980 19 1620 19 19
7 1994730 26 2665800 161 294900 147 161
8 2454750 21 2764920 143 303330 128 143
9 31560 12 3177690 23 2880 22 23
10 42330 12 3176220 23 4350 22 23
11 1003 28 973 200 30 40 200
12 5673 21 5625 212 48 31 212
13 127 19 112 197 6 27 197
14 5495 22 5148 183 20 28 183
15 4192 18 4441 171 17 19 171
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DISCUSSION

The different parameters and interventions simulated using NetLogo provide dynamics 
transmission results in the case of COVID-19. Throughout this study, parameters such as 
vaccination rate, transmission rate, the initial number of infected cases, incubation period, 
mobility rate, social distancing, lockdown intervention, and geographical features play an 
important role in depicting the real-world situation, which highlights the nuanced interplay 
of these factors in disease outbreak management.  

The initial number of infected cases proves to be one factor that leads to a higher 
number of cases, such as in Simulations 5 and 8. The higher the number of infected cases, 
the higher the susceptibility of the citizens to be exposed to the infected, causing the number 
of cases to spike faster (Balakrishnan et al., 2023). The higher vaccination rate, such as in 
Simulation 10, is effective in curbing the disease spread, which shows that the vaccination 
program is effective in controlling the severity effect of the infectious disease (Chen et 
al., 2022). The types of variants, especially Omicron and Delta, with higher transmission 
rates demonstrated that these variants are contagious and a higher vaccination rate is able 
to reduce mortality and higher mobility produced higher cases, especially in the absence 
of movement restrictions (lockdown) and social distancing rate (Chenchula et al., 2022). 

The first case in Sabah was reported on 25 January 2020, but Sabah remained 
unaffected by this case until Sri Petaling tabligh cases appeared, which caused a 
massive wave in Malaysia, including Sabah (Balakrishnan et al., 2023). We compared 
the simulated cases with the real-world cases that occurred in Sabah from March 2020 
until March 2022. Simulation 1 to Simulation 10 produced a high variance due to the 
discrepancies with the real-world conditions. However, simulation 11 until simulation 15, 
which considered the geographical features and obstacles, variant types, social distance, 
citing and lockdown measures, produced more robust and reliable results with the real-
world data for infected and recovered. Simulations 12 and 14 depicted the least variation, 
about less than 10%, for recovered and infected cases compared to other simulations. 
However, the simulation of death cases is not successfully captured by the simulation due 
to the model representing different health states, and it handled the transition between each 
compartment (susceptible, carrier, infected and recovered) in deterministic modelling 
(Godio et al., 2020). Data such as different age groups is crucial to determine the death 
susceptibility as the older age groups may have more severe effects towards the outbreak 
(He et al., 2020). This comparative analysis demonstrated that simulations 12 and 14 are 
the most accurate and aligned with the true data in Sabah because the simulation added 
new parameters such as geographical obstacles, variant types, social distancing and 
lockdown intervention. The first simulation until simulation 10 shows a large variance 
with the true data due to significant real-world representation differences, especially in 
terms of variant differences and geographical features. 
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The infected cases in Sabah have spiked during August 2021 and February 2022. 
The emergence of the Delta variant and Omicron in Sabah has caused the number of 
infected cases to be high, especially without the lockdown intervention. The Delta variant, 
which arrived in Sabah in June 2021 has caused the COVID-19 cases to spike in August 
2021 (3487 cases) (Balakrishnan et al., 2023), which is the same as our predicted cases, 
around 4192 (20% variance) cases in Simulation 15. The variance is most likely due to 
a lack of demographic data such as age, severity of the cases and distance of the patient 
to the nearest health facility (Jiee et al., 2021). Sabah Health Authority Department has 
taken the initiative to expedite the targeted groups in Sabah, especially those who live 
in rural areas, to take the vaccination dose to shrink the number of infected COVID-19 
cases (Harizah, 2021). This condition is correlated with the study by Dollah et al. (2022), 
which highlighted that misinformation and information management have impacted 
youth vaccine hesitancy in Sabah. Moreover, the geographical features in Sabah have 
shown difficulties for the health authority in accessing and facilitating the distribution 
of vaccination programmes. 

Due to the failure of the vaccination program in Sabah, it only reached less than 50% of 
the vaccination adult program during the end of 2021; the cases of COVID-19 reached their 
peak in January 2022 and reached 5565 cases due to the Omicron variant (Balakrishnan et 
al., 2023; Patrick, 2022). The Omicron variant has a higher transmission rate compared to 
the Delta variant due to its multiple mutation characteristics in the spike protein of the virus 
(Reeves et al., 2022). It increases the ability of this variant to bind with human cells and 
attack the human immune system (Ahasan et al., 2022). Our simulated data in Simulation 
12 and 14 are almost identical to the third wave of COVID-19 during the Omicron spread 
in Sabah. The variance of the prediction with the true data is 2.54% for Simulation 14 and 
5.86% for Simulation 12, which makes Simulation 14 more accurate to the actual number 
of cases. The recovered and death cases during the peak wave are 1708 and 14, respectively. 
Our prediction estimated around 183 recovered cases and 28 cases, respectively, which 
was underestimated due to insufficient demographic data.

The limitations of this study are that the simulation assumes a random movement 
pattern, linear mobility pattern, homogenous population and vaccination rates, which 
may not accurately reflect real-world mobility patterns. Additionally, Netlogo software 
is unstable if the dataset is too large, causing the map’s performance and visualisation to 
become very slow to load. Hence, AnyLogic software can be used to overcome this problem. 

CONCLUSION

Overall, the simulation is a deterministic and fundamental model that can provide 
important insights to the local health authority and government by developing an 
Agent-Based Model integrated with the SEIR model in areas with complex geography. 
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Simulation with geographical features, lockdown intervention, social distancing, variant 
types, and vaccine programmes have shown accurate results with a 2.54% variance from 
the true data. This model can be further tuned with the smaller scale of the granularity 
of geographical units, social isolation, immunisations and demographic variations. The 
findings highlight the necessity for efficient preventative strategies, early intervention, 
and precise statistics to support policy development.
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